The cutting edge (part 1 of 2)

Here’s the first of two installments summarizing the original, PSP-related research presentations at the annual conference of the International Parkinson and Movement Disorder Society held in early October 2025 in Honolulu. 

The listing is in no particular order and each is followed by my own editorial opinion.  I’ve culled the 29 PSP-related presentations down to the twelve I considered most interesting considering both their scientific importance and their potential interest to this blog’s readers. 

Clinical Deficits, Quality of Life and Caregiver Burden across PSP Phenotypes

A. Cámara, I. Zaro, C. Painous, Y. Compta (Barcelona, Spain)

Caregiver burden is greater for PSP-Richardson syndrome than for other PSP subtypes, and quality of life showed a statistically non-significant trend for PSP-RS as well.  This information may be useful in counseling patients and caregivers.

LG comment: This result would be expected given the rapid progression of PSP-RS and its high prevalence of falls and dementia relative to most other PSP subtypes.  The study importantly points out that caregiver burden receives too little attention from clinicians, researchers, policy planners and insurors.

Clinical Features Suggestive of Alpha-Synucleinopathy in Progressive Supranuclear Palsy

C. Painous, A. Martínez-Reyes, J. Santamaria, M. Fernández, A. Cámara, Y. Compta (Barcelona, Spain)

Rapid eye movement behavioral disorder and reduced ability to smell are known to be very common in Parkinson’s disease and other alpha-synuclein-aggregating disorders but also occur to some extent in those with PSP.  All of this study’s patients with PD and 10% if those with clinically typical PSP had a positive spinal fluid alpha-synuclein seeding amplification assay (SAA).

LG comment: The new SAA test is not perfectly specific for synucleinopathies and could produce a false positives in people with PSP.  The same is true for RBD and reduced smell sensitivity.

Identification of Genetic Variants in Progressive Supranuclear Palsy in China

Y. Kang, W. Luo (Hangzhou, China)

Pathogenic or likely pathogenic variants consistent with their respective inheritance patterns were detected in 20% (8/40) of patients: three carried PSP-related variants (CCNF, DCTN1, POLG), while five harbored variants in neurodegeneration genes linked to PSP-like phenotypes (AARS1, TDP1, FA2H, TBP, ATXN8).  The controls were only historical controls from the literature.

LG comment: This list of genetic variants, each conferring a very slight increased PSP risk, differs from the lists reported in Western populations, which also have important differences from one another.  The differences could be related to geographically or culturally related environmental contributions (which need different genetic backgrounds to cause damage) or to differences in laboratory methods or choice of non-PSP control populations.

Unraveling the Genetic Architecture of Progressive Supranuclear Palsy in East Asians

P. Chen, R. Lin, N. Lee, J. Hsu, C. Tai, R. Wu, H. Chiang, Y. Wu, C. Lu, H. Chang, T. Lee, Y. Chang, C. Lin (Taipei, Taiwan)

Using a Taiwanese population, this study identified three likely pathogenic variants, in the genes called APP and ABCA7, and the mitochondrial genome.  It also found 39 variants of unknown significance in 37 PSP patients (20.9%), involving  other genes, many of which were already known to confer slight risk for PSP.   

LG comment: The difference in apparent genetic risk factors between Shanghai (previous abstract by Kang et al) and Taiwan underscores the possibility of differences in methodology, although ethnic differences between those two geographical areas could be contributing.  Genetic study of PSP in East Asians could benefit all ethnicities by identifying previously unsuspected cellular pathways involved in the disease.

Multimodal imaging Integrating 18F-APN-1607 and 18F-FP-DTBZ PET in Progressive Supranuclear Palsy

C. Dong, J. Ma, S. Liu (Beijing, China)

Several kinds of positron emission tomography (PET) imaging are being tested for their ability to accurately diagnose PSP.  Two of them were applied concurrently to a group of 20 participants with PSP and a control group.  One, called 18F-APN-1607, shows abnormal accumulation of the tau protein and the other, called 18F-FP-DTBZ, images the neurons that use dopamine.  The result was that 16 of the 20 were correctly identified by the 18F-APN-1607 and three of the other four were identified by the 18F-FP-DTBZ as being probable Parkinson’s disease.  The conclusion is that performing both types of PET could provide more accuracy than the tau PET alone in distinguishing PSP from PD.

LG comment: This result is consistent with the age-old medical principle that there’s no such thing as a perfectly accurate diagnostic test.  Two or more tests measuring different aspects of the same disease can work in a complementary manner to improve diagnostic accuracy.  Fortunately, PET is a nearly harmless, nearly painless test.  Its main drawbacks are time, expense and insufficient availability of many kinds of PET outside of referral centers.

Levodopa response in pathology-confirmed Parkinson’s Disease, Multiple System Atrophy and Progressive Supranuclear Palsy

V. Arca, J. Jurkeviciene, S. Wrigley, P. Cullinane, J. Parmera, Z. Jaunmuktane, T. Warner, E. de Pablo-Fernandez (London, United Kingdom)

About one in three people with PSP experiences some degree of benefit on levodopa, a statistic that prompts most neurologists to give that drug a try.  However, the benefit is often short-lived.  To measure this in a formal way, these researchers reviewed the medical records of autopsy-confirmed patients with PSP, PD or MSA.  Those responding well for over two years were 2% of those with PSP, 86% of those with PD and 8% of those with MSA.

LG comment: The short duration of useful benefit from levodopa in PSP means that each patient enjoying a benefit after the drug initiation should be re-evaluated at each subsequent visit for a continued benefit.  As levodopa can have long-term side effects such as low blood pressure, hallucinations and involuntary movements, a dosage taper carefully monitored by the physician should be considered after the first year or so of treatment.

One RNA fits all?

Maybe I’m streaming too many dramatic TV series these days.  My October 9 post ended in a cliffhanger, teasing an “oddball” molecule that could point the way to neuroprotective treatments for PSP and other neurodegenerative diseases. It’s called “lncRNA FAM151B-DT.” 

Quickly, some background.  The RNA most familiar to us is messenger RNA.  Its length can be anywhere from a few hundred to a few thousand base pairs (the genetic code’s “letters” for a single gene or a fragment thereof). The RNA is constructed (“transcribed”) in the cell’s nucleus from the code in DNA, then scoots out to the ribosomes, where it’s translated into a string of amino acids to build a specific protein.  But only about two percent of the DNA in our genome encodes the kind of RNA for making proteins, called messenger RNA.  Most of the rest, about 75 to 90 percent, encodes RNA that regulates DNA transcription or other cell functions.  A little of that “non-coding RNA” is “micro-RNA,” which has only about 20 to 25 base pairs, and the rest, with over 200 base pairs, is called “long, non-coding RNA.” 

Now I’ll get to the point. A research group at Washington University in St. Louis just published a paper entitled, “A novel lncRNA FAM151B-DT regulates degradation of aggregation prone proteins.”  They used brain cells obtained at autopsy from people who had died with PSP, Alzheimer’s, or Parkinson’s disease.  They also used skin cells from a living person with a form of frontotemporal dementia with Parkinsonism (FTDP), which is caused by a mutation in the tau gene. They transformed those (slightly) specialized skin cells into unspecialized stem cells, then transformed those into highly specialized brain cells.

The lead author of the WashU study is Arun Renganathan, PhD, a staff scientist in the Department of Psychiatry.  The senior author is Celeste Karch, PhD, associate professor of psychiatry. Disclosure: Dr. Karch and I have collaborated in research in the past and she’s a member of CurePSP’s Scientific Advisory Board, which I am honored to chair.

In each of those four disease-specific brain cell cultures, the team found FAM151B-DT reduced relative to control cells and that silencing FAM151B-DT by “knocking out” its gene increased the concentration of whichever protein was aggregating in the corresponding human disease (tau for PSP, AD and FTD-P; alpha-synuclein for PD). The mechanism was a blockage of autophagy, an important component of brain cells’ “garbage disposal” system.  The researchers found that FAM151B-DT serves as a “scaffold” to allow the tau or alpha-synuclein protein and a “chaperone” molecule called HSC70 to interact with the lysosomes, a kind of bubble in the cell fluid containing protein-degrading enzymes.  

A critical piece of the new research is that increasing the cells’ production of FAM151B-DT stimulated that system to dispose of excess tau or alpha-synuclein. That means that FAM151B-DT is the “rate-limiting step” in the process.  As you’d imagine, this suggests that increasing the concentration or efficiency of FAM151B-DT could slow or halt progression of these diseases.  All four of them.

So, how does this relate to the cliffhanger from yesterday’s post about our evolving perspective on the similarities and differences between PSP and AD?  One reason to be interested in the differences between those two is that a rare disease with limited research funding like PSP could benefit from research on treatments for AD, a very common disease with much more research funding and huge commercial potential.  Besides, we in the PSP community like when drug companies try out their AD drugs on PSP first – because of their common underlying cellular and biochemical similarities. The new paper from WashU has found one more very important similarity.

It’s not only PSP and AD.  The new paper found FAM151B-DT just as relevant to PD and FTDP.  I expect to see research soon on its relevance to others forms of FTD and to ALS, dementia with Lewy bodies, corticobasal degeneration, multiple system atrophy, and many others.  Then we wouldn’t have to worry so much about making an accurate diagnosis early in the disease course– maybe one cure will fit all!

Switching sides

I want to tell you about one small study that, although it needs expansion and confirmation, is exciting because it could allow a future PSP neuroprotective treatment to be prescribed before having to wait for symptoms to appear.

You’ve probably heard of the protein “alpha-synuclein”  (pronounced “suh-NOO-klee-in”). It has a long list of normal functions in our brain cells, but in its various misfolded forms, is the major component of abnormal protein aggregates of Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy.  Now, a blood test for alpha-synuclein might actually provide a way to diagnose PSP despite the fact that tau, not alpha-synuclein, is PSP’s abnormally aggregating protein. 

The new paper in the journal Biomedicines by researchers at the University of Catanzaro in Italy, have found the concentration of alpha-synuclein to be slightly greater in the red blood cells of people with PSP than in healthy people or those with PD.  The graph below from the journal article (with my explanatory notes and arrows) compares results from the eight people with PSP to 19 with PD and 18 healthy control participants.  The vertical axis is alpha-synuclein concentration expressed in nanograms of alpha-synuclein per milligram of red blood cells. 

One paragraph of technical background on alpha-synuclein: While alpha-synuclein does most of its work in brain cells, helping in neurotransmitter release and protect against mis-application of the cell’s “suicide” program (called “apoptosis”), it’s also abundant in red blood cells.  In fact, it’s the second-most-abundant protein in red cells after, of course, hemoglobin.  The job of alpha-synuclein there is to help to stabilize their red cells’ outer membranes and to help in the process of removing the nucleus from the red cells’ precursor cells in the bone marrow.  Nucleus removal makes more room for hemoglobin and more important, allows the cells to deform more easily as they pass through capillaries.  That deformation provides a signal to the hemoglobin to release their oxygen to the tissue.

Back to business: The graph shows clear overlaps between PSP and the other groups, but the medians do differ to a statistically significant degree.  The short arrow by the vertical axis points to a value of 85.06 ng/mg, which the researchers chose in retrospect as the best cutoff between normal and abnormal.  Using that definition, the sensitivity of the measure was 100%, meaning that all eight participants with PSP had an abnormal result (that is, a value higher than 85.06).  The same cutoff yielded a specificity of 70.6%, which is the fraction of the PD and HC participants with a normal result; in other words, the fraction that would be diagnosed correctly as “non-PSP.”  

But if only 70.6% of the participants with “non-PSP” have a normal test result, that means that the other 29.4% have an “abnormal” result and would be falsely diagnosed with PSP.  PD is about 20 times as common in neurological practice populations as PSP, so for every 1,000 patients who might have PSP or PD and see a neurologist, about 50 have PSP and 950 have PD.  If you do the red cell test in all 1,000, that means that 29.4% of 950, or 279, will have an abnormal result.  If all 50 with PSP also have an abnormal result, that totals 339 people with abnormal results, of whom 279 (a whopping 82%) don’t actually have PSP.

So, a neurologist seeing a result below that 85.06 cutoff would be able to reassure patient that they do not have PSP, with, of course, the usual precaution that outliers and lab errors do exist.  A result above the 85.06 cutoff would prompt other diagnostic tests with greater specificity, although probably with greater expense, inconvenience and/or discomfort.  I hasten to add that like any new research finding, this needs confirmation by other researchers using other, larger patient populations in all stages of illness. 

You may recognize this result as the definition of a “screening test.”  That’s a relatively inexpensive, convenient, safe and sensitive test suitable for use in large populations of asymptomatic or at-risk people.  If a screening test is positive, further testing, or at least close observation, is advised.  A good example is a routine mammogram, where a negative reading is great news and a positive reading prompts further testing.  In this example, that testing usually results in a diagnosis of a benign cyst or scar or something else other than breast cancer, and the few women whose mammogram abnormalities turn out to be breast cancer and whose lives are saved by the ensuing treatment will be very glad to have had that screening test.  A similar situation could develop for PSP once we have an effective way to slow or halt progression of the disease.  That’s what the PSP neuroprotection trials currently under way hope to accomplish.

It seems unlikely from the new data that red cell alpha-synuclein concentration would ever offer enough specificity to diagnose PSP to the exclusion of non-PSP.  But people with a positive test could then have, perhaps, an MRI, where certain arcane measures of the midbrain and basal ganglia could provide diagnostic information with the specificity for PSP that’s missing from the red cell alpha-synuclein test.  In this way, the red cell alpha-synuclein is similar to neurofilament light, a protein elevated in the blood and spinal fluid in PSP but also in several other neurodegenerative diseases.

The senior author of the new paper is Dr. Andrea Quattrone, whom I know well and can vouch for.  He is an internationally recognized leader in discovering diagnostic markers for PSP.  The first-named author is Dr. Costanza Maria Cristiani.

More technical stuff in italics: Why should alpha-synuclein occur in elevated amounts in a tau-based disorder like PSP?  Cristiani et al hypothesize that the red cells absorb most of their alpha-synuclein from the plasma (the liquid component of the blood) rather than being “born” with it in the bone marrow.  They cite previous findings that excessive tau protein impairs the blood brain barrier, which could allow alpha-synuclein, an abundant protein in the brain, to leak into the blood, where it’s “scavenged” by the red cells. An obvious next step is to check other tauopathies such as Alzheimer’s disease for elevated red cell alpha-synuclein.

And now, on a personal note:  My career as a researcher started in Parkinson’s disease and for a decade starting in 1986, I led the clinical component of the project that discovered that alpha-synuclein was related to PD.  It began when I found and painstakingly worked up a large family with a rare, strongly inherited form of PD .  That work, which included many collaborators I recruited in multiple institutions and countries, showed that family’s illness to be caused by a mutation in the gene encoding alpha-synuclein, which had not previously been suspected of any relationship to PD.  Soon thereafter, others found alpha-synuclein as the major constituent of Lewy bodies (the protein aggregates of PD) in individuals with ordinary, non-familial PD without the mutation.  Now, alpha-synuclein treatments and diagnostic tests are being developed for PD.  So, if a critical diagnostic test for PSP, the disease to which I’ve devoted most of the more recent decades, should turn out to be based on alpha-synuclein, that would nicely satisfy the scientific narcissist in me.

Is PSP the route to not just Alzheimer’s but also Parkinson’s?

We’ve known for many years that Parkinson’s disease, which the textbooks call an α-synucleinopathy, has some aggregated tau as well. It appears that each of the two proteins, once misfolded, not only induces its own normal brethren to misfold, it also induces copies of the other to misfold.
The first demonstration of this synergistic misfolding and resulting aggregation came in a series of three papers between 2002 and 2004 from the lab of John Trojanowski and Virginia Lee at Penn. The first authors were John Duda, Bernard Giasson and Paul Kotzbauer. (Disclaimer: I was one of their co-authors on all three.)

Now, Julia Gerson, a grad student in the lab of Rakez Kayed at the University of Texas Galveston, has presented work at the Society for Neuroscience that harnesses that finding of a PD/tauopathy overlap for therapeutic purposes. (Another disclaimer: Kayed has a related grant from CurePSP, where I chair the grant review.)

Gerson and friends created antibodies directed at oligomeric tau, which is tau in small aggregates of maybe 20 or 30 molecules, which are still small enough to remain in solution in the cytoplasm and therefore invisible to light microscopy, unlike mature neurofibrillary tangles. They didn’t want to target normal, non-aggregated tau for fear of disrupting the normal function of that protein, which is to stabilize microtubules.

They injected those anti-tau antibodies into mice that had a copy of a variant of the human gene encoding α-synuclein. The variation was an G209A mutation, producing an A53T alteration in the resulting protein. This is the mutation that my colleagues and I found in 1997 as the cause of PD in a large Italian-American family with autosomal-dominant PD, a finding that first linked PD with α-synuclein. (That’s Disclaimer #3. You’re starting to see why I’m so interested in this new finding.)

The antibody protected the mice against the loss of dopaminergic neurons that the α-synuclein mutation caused in the untreated mutant mice. Mice that received antibody against normal tau did even more poorly than the controls.

So here’s the take-home: Developing an anti-tau antibody for treatment of PSP may also help Parkinson’s. We already expect that it may help Alzheimer’s because that’s clearly a tau disorder. But now, the synergistic toxicity of tau and α-synuclein could also allow a single anti-tau antibody to protect against both Parkinson’s and dementia with Lewy bodies (which also has aggregation of both proteins).

If I were the drug companies, I’d be sitting up and taking notice. Two companies, Bristol-Myers Squibb and AbbVie (licensing an antibody from C2N) have already started anti-tau antibody trials in people with PSP. Others have anti-tau programs in progress.

This new report, which may extend the utility of those products to Parkinson’s, should give that snowball an extra push.

PSP markers in CSF? Not yet

As a PSP-ologist, it takes a lot to discourage me, but the excellent review of CSF markers in the diagnosis of PSP did it. Nadia Magdalinou, Andrew Lees and Henrik Zetterberg of University College London, writing in the JNNP, point out that no CSF measure has been consistently or reproducibly found to differentiate PSP from all of the relevant competing diagnostic considerations.
An excellent study cited in the review found low levels of CSF α-synuclein in Parkinson’s, DLB and MSA relative to PSP and other brain disorders. A value less than 1.6 pg/μl had good (91%) positive predictive value for any synucleinopathy but higher concentrations had poor (20%) negative predictive value.  So that measure is of some small value.
Neurofilament light chain in CSF is elevated in PSP, MSA and CBD, according to another study, with an area under the ROC curve of 0.93. This has been confirmed by others since. This is useful in distinguishing PSP from PD, but when your patient has a poor levodopa response and downgaze problems, PD isn’t really the issue; PSP, MSA and CBD are.
One study of neurofilament heavy chain found that it can differentiate PSP from CBD but not from MSA. That study was published in 2006 and we’re still awaiting confirmation.
You’d think that tau would be the object of intense scrutiny in the differential diagnosis of PSP by CSF, but there’s been relatively little on that. One good study found that the ratio of phospho-tau to total tau is lower in PSP and MSA than in PD. The other studies of phospho-tau in PSP have been negative.
So the winner so far for PSP, limping across the finish line, seems to be neurofilament light chain. It’s not available commercially as far as I can tell; nor should it be, without further study.
Adding to this discouraging picture is the fact that most or all of the studies of CSF markers in PSP have sampled patients in a stage of PSP that allowed clinical diagnosis. By that time, the CSF picture may be more diagnostic than in the earlier stages, when a state marker would be most useful. In other words, the studies were retrospective rather than prospective.
For now, I’m putting my money on imaging.