Adopt an orphan

If PSP is an orphan disease, corticobasal degeneration (CBD) can’t even get into the orphanage.  Like PSP, it’s a “pure 4R tauopathy”; it can resemble PSP in many cases; it leads to disability and death after a similar span of time; and it’s no more treatable.  But its prevalence is about 10-20% that of PSP and it’s very difficult to diagnose in a living person.  People fulfilling the accepted, published diagnostic criteria for the most common type of PSP (PSP-Richardson syndrome) actually have that disease at autopsy in over 90% of cases, but for CBD, the figure is less than 50%.  That makes it hard to recruit a group of subjects for a drug trial — or any research — without other diseases influencing the result.  That has put quite a damper on CBD research.

To add injury to injury, googling “CBD” reveals a lot more about cannabidiol than about corticobasal degeneration.

So, an objective diagnostic test for CBD would be great.  Now, researchers mostly at Washington University in St. Louis (WUStL) and University of California, San Francisco (UCSF) have shown that two tiny fragments of the tau protein are less abundant in the spinal fluid of people CBD than in healthy people or those with PSP or three other rare tau disorders called argyrophilic grain disease, Pick’s disease and frontotemporal lobar degeneration associated with aggregation of TDP-43.  They found no difference between CBD and Alzheimer’s disease or frontotemporal lobar degeneration with mutations in the tau (MAPT) gene, but in practice, those two disorders can be readily distinguished from CBD by other means.

The paper appears in the prestigious journal Nature Medicine and it’s open access, so I can provide you this file to download.  The first author is Kanta Horie, PhD and the senior authors are Chihiro Sato, PhD and Randall Bateman, PhD, all of WUStL. 

Panel “a” shows the tau protein. The four microtubule-binding domains are R1 to R4. The one whose inclusion or exclusion makes the difference between the 4R and 3R tauopathies is R2, which is encoded by the gene’s exon 10. The amino acids are numbered starting at the N terminus on the left. Two short stretches of amino acids, numbers 275 to 280 and 282 to 290, were the object of this paper’s analysis. N1 and N2 are two other sections, encoded by exons 2 and 3, respectively, that can be included or excluded in the finished tau protein.

Panel “b” shows the analysis of the 275-280 fragment of tau in the spinal fluid (CSF). The vertical axis is the ratio of the concentration of the 275-280 fragment divided by the concentration of total tau. The horizontal axis lists the tauopathies analyzed in this project. Each circle is one patient. The “box-and-whisker” plot shows, from top to bottom, the maximum value, the 75th percentile, the median, the 25th percentile, and the minimum value. The asterisks indicate the statistical significance of the comparison between the two groups at the ends of each horizontal line segment. One asterisk is a weak difference and four is the strongest. Pairs of groups without a horizontal line connecting them did not differ (i.e. the p value was greater than 0.05, meaning that any difference between them could have occurred by chance with a likelihood of more than 1 in 20).

Panel “c” shows the same thing, but for the 282-290 fragment of tau. The results are essentially the same as for the 275-280 fragment.

The odd thing is that the same analysis using autopsy brain tissue rather than spinal fluid gave a very different result: The values (i.e., the ratio of the fragment to total tau) was actually higher for CBD than for the other groups. The authors present various theories to explain this, but in any case, it does not detract from the diagnostic value of the spinal fluid results. Take a look and the brain tissue results:

So, what does this mean for people diagnosed with CBD, present and future?  It means that if someone like a drug company has an experimental treatment that might help CBD, they could recruit a group of patients with a high level of confidence that they have excluded other diseases that could confound their results.  That level of confidence is expressed as the “area under the receiver operating curve” or AUC.  A previous post on this blog explains that statistic, which varies from 0.5 for a diagnostic test no better than a throw of the dice to 1.0 for a test that’s perfectly accurate every time.  The AUC for this test to distinguish CBD from those other disorders (other than AD and FTLD-MAPT) is 0.800 to 0.889.  That’s close to the figure for PSP using the neurological history and exam.

If this diagnostic test is confirmed (a big “if”) and enters use by researchers and drug companies, and if a drug company sees a route to profitability in so rare a disease, the only problem is finding enough patients with CBD for a trial.  If CBD is 20% as common as PSP, and the new test for CBD is just as good as the present clinical diagnosis of PSP, then it will require five times the number of participating clinical test sites to fill a trial.  But with international collaboration, it’s do-able. 

Now, let’s hope that this test is adopted and that CBD is adopted. 

Reports from the front

Last week the International Parkinson and Movement Disorder Society held its annual meeting – by Zoom, natch.  (A pity – in normal times, that meeting is held each year in a different, interesting international city, letting us append a culturally-oriented vacation to a consistently great conference.  But COVID has done far worse to others, so I shouldn’t complain, and the Zoom format allowed clinicians working in remote or poor countries to participate, a major plus.)

There were 1,320 original research presentations, all in the form of posters.  Of those, 37 came up in my search on “progressive supranuclear palsy.” Presented now for your delectation, in random order, are summaries of the top five presentations of original research in PSP along with my own take on their importance and implications: 

  • Imaging/Gait Correlates: 

A group from the Mayo Clinic led by Dr. Irene Sintini performed detailed gait analysis in 19 people with PSP and imaged their brains in three ways: non-contrast MRI (looking for atrophy in specific areas), diffusion tensor imaging (an advanced MRI technique showing fibers connecting the various parts of the brain and the speed of fluid slowly flowing through in them), and flortaucipir PET (showing tau aggregation, a research technique not quite ready for routine clinical diagnostic use in PSP, but working quite well for Alzheimer’s).  Then they looked for associations among the gait and imaging measures.    

They identified two general patterns of association:  One was that better gait velocity, stride length, and gait stability were associated with larger frontal lobe volumes and less flortaucipir uptake in the precentral gyrus, which is a part of the frontal lobe that controls movement.  The other was that worse postural imbalance was related to greater flortaucipir uptake in the left paracentral lobule, which helps control movement and sensation on the right side as well as bowel and bladder function.

Admittedly, this was kind of a “fishing expedition,” an unkind term we use for a research project that’s just looking for patterns of abnormalities without a specific hypothesis in mind.  But that’s how the process leading to eventual breakthroughs can begin.  In this case, associating specific gait-related abnormalities of PSP with specific brain regions could point the way to deep-brain stimulation techniques, cell replacement therapies, or transcranial (i.e., non-invasive, painless) magnetic or electrical stimulation treatment.  Besides, who knows what gene therapy might come along in a few years to take advantage of this groundwork in some still-undreamt-of, anatomically-directed way?

  • Diagnostic MicroRNA:

Dr. Ravi Yadav and colleagues at India’s National Institute of Mental Health and Neurosciences in Bangalore compared microRNA in plasma (blood without its cells) from 18 patients with PSP and 17 healthy controls matched for age and sex.  They used a type of polymerase chain reaction (PCR) test that, unlike PCR for forensic purposes or COVID testing, provides quantitative measurements.  MiRNA regulates many things in cells, acting much like enzymes.

They found five kinds of miRNA where the difference between PSP and controls was large enough to serve as a diagnostic test.  A commonly used measure of the ability of a diagnostic test to work well at the individual level rather than merely to distinguish groups by their averages is called the “area under the receiver operating characteristic curve” (AUC).  A good AUC is at least 0.8, with a perfect test being 1.0.  These five miRNAs’ AUC’s ranged from 0.78 to 0.86. 

This is promising, and if refined and perhaps combined with another moderately accurate test, could provide an excellent test for PSP.  But first, we need replication in a larger study and a different lab; PSP has to be compared by this test to other neurodegenerative disorders, not just to healthy controls; and cases with early, diagnostically-equivocal signs of PSP should receive this test and then be followed until a diagnosis declares itself.

  • Astrocyte Proteomics:

Astrocytes are the main type of glial cells in the brain.  They are largely non-electrical but perform many supportive functions for the neurons and may actually process information.  They are where the abnormalities of PSP start.  These cells don’t normally make tau but they can accumulate it in the tauopathies, and their resulting appearance, called “tufted astrocytes,” is the pivotal diagnostic feature of PSP through the microscope. 

Dr. Felipe Ravagnani and co-workers from the University of São Paolo, Brazil were interested in what genes are expressed into protein more intensively in such cells from patients with PSP relative to the same cells from healthy controls.  You can’t take astrocytes from a living person’s brain, so they created them in a dish by taking fibroblast cells from the lowest layer of a skin biopsy from each subject and treated them with various things to first remove their skin specializations and to become stem cells.  Then they treated with other things to turn them into astrocytes and compiled and compared the proteins in PSP-patient-derived astrocytes to those from controls.

Such a technique ordinarily produces a long list of differences that’s hard to draw any conclusions from.  So it pays to classify the proteins that differ between the two groups into the kinds of cellular and biochemical pathways in which they participate.  This incriminated two pathways.  One was for cell cycle activation, which is how the cell decides when to divide and to stop dividing.  The other was for one of the chaperone pathways, in this case CTT/TriC, which is important to axonal transport and to degradation of abnormal or excessive proteins.  Both pathways involve tau.

It’s still too early to know what to make of this, and proteomics research is notoriously subject to methodologic variables.  But the chaperone pathways, which are important in regulating protein folding, have been suspected for many years as part of the cause of PSP.  Cell cycle abnormalities are critical to cancer, but the opposite problem – insufficient cell division – could contribute to glial pathology and start the more general neurodegenerative process.  If the new results are confirmed, they would present new targets for drug development.

  • CBD Diagnostic Accuracy:

Just as PSP has multiple variants, so does corticobasal degeneration (CBD).  The most common and the classic form is called CBD-corticobasal syndrome (CBD-CBS).  Other common ones are CBD-PSP syndrome, CBD-frontal behavioral/spatial syndrome (CBD-FBS) and CBD-nonfluent/agrammatic variant aphasia (CBD-NAV).  A set of clinical diagnostic criteria for CBD was published in 2013. 

Now, Drs. Danielle Lux and colleagues at University College London have evaluated the accuracy of the CBD criteria in predicting actual CBD pathology at autopsy in 133 cases.  They found the positive predictive value (PPV) of the “probable CBD” criteria was only 33% and the PPV for the “possible CBD” criteria was only 51%.  (PPV is equal to the number who actually have the disease on autopsy divided by the number who have tested positive during life by satisfying the clinical criteria.)  They also found that CBD-NAV had a better PPV than the other variants.  As an aside, CBD-PSP had the most rapid course of all of the variants assessed.

These results confirm and extend previous reports in the literature using smaller sample sizes.  They better elucidate CBD’s wide variety of clinical presentations. This variety is the main reason why almost all of the clinical trials so far testing tau-directed treatment enroll people with PSP-Richardson syndrome, not CBD — the PSP-RS diagnostic criteria have a much greater PPV for actual PSP pathology at autopsy.  We hope that tau PET imaging and fluid biomarkers in CSF or blood will soon correct this situation for folks with CBD.

  • A Survival Model:

Until the fine day comes when we can prevent or slow the progression of PSP, predicting survival is important.  Patients and families need to plan psychologically and financially.  Designers of long-term treatment trials need to know the likely dropout rate due to death. 

Dr. Tao Xie and colleagues at the University of Chicago have added usefully to the considerable existing literature on this topic.  In 23 patients who had died with PSP, they recorded the time from onset of the first PSP symptom to onset of downgaze palsy; the severity of downgaze palsy at that point using a scale ranging from 10 to 100; sex; age at PSP onset; motor function; and use of medication for parkinsonism or for pulmonary or cardiovascular diseases.  They used those data to create a formula by which to calculate survival from onset to death.

They found that total survival duration in years can be predicted by the equation: 5.76 + (1.11 x disease duration at the assessment) – (0.03 x downgaze palsy severity at the time of the assessment) – (0.03 x the age of onset).  The result predicted total survival duration reasonably accurately, with an average error of 0.82 (standard deviation 0.67) years.

The method of measuring the downgaze palsy was not described in the brief presentation and may be somewhat subjective, so an even more accurate prediction may be feasible using other measures.  Also, it’s not clear from the material presented that other features of PSP might perform as well as downgaze palsy as a predictor of survival.  For example, last year my colleagues and I published a very different method of estimating PSP survival that works about as well as this new one but requires administration of the whole 28-item PSP Rating Scale. 

At the scientific level, it’s interesting that in the mathematical model of Xie et al, downgaze palsy is an important factor in predicting death despite involving only a small portion of the total brain pathology.  I say that because in PSP, death is not particularly related to visual problems, but is usually the result of overall immobility, poor nutrition, aspiration and bladder infections.  But even if the measure of downgaze palsy only provides the model with an easily-measured proxy for those other disabilities, the model would still be a convenient and useful service for patients and families. 

——————————

Keep in mind that despite clearing the bar for acceptance at this conference, these research reports have not been subjected to a detailed peer-review process.  In fact, most original presentations at most conferences are never published in anything like the same form.  But I chose to relay these five to you because I think that in the end, they’re likely to stand up to scrutiny and to influence scientific thinking or bedside practice.