Is PSP genetic? An update

Last week, someone wrote to CurePSP asking if PSP was genetic. I took a look at what I had previously provided CurePSP on that topic to post on its website, and decided it wasn’t nearly detailed enough. So I decided to write up the following. A version of it appears, or will soon appear, at http://www.curepsp.org.

PSP only very rarely runs in families.  Fewer than one in 20 people with PSP knows of even one other family member with PSP, even counting distant cousins. 

But when multiple genetic variants confer only small risks of developing a disease and some sort of non-genetic factor is also necessary, it will be rare for more than one member of a family to have the unlucky co-occurrence of enough of those factors to produce outward signs of the disease. 

That’s basically how PSP works, but then things get a little more complicated:

The gene on chromosome 17 that encodes the tau protein is called MAPT, for “microtubule-associated protein tau.”  The MAPT gene has two variants that are more common in PSP than in the rest of the population.  One of them is called the H1 haplotype and actually consists of a section of the chromosome that is reversed relative to adjacent sections.  About 95 percent of people with PSP have this variant on both of their copies of chromosome 17, while this is true for only about 60 percent of the rest of the population.  So the H1 haplotype is (nearly) necessary but far from sufficient to cause the disease. 

We’re still not quite sure how the H1 haplotype increases PSP risk.  It may simply increase the amount of tau produced, which causes that protein to stick together, even if it’s structurally normal.  But more recent work shows that it causes too many methyl groups to stick to the MAPT gene, altering its function. This is exciting because drugs can be developed to alter DNA methylation. Other recent evidence supports the idea that the H1 haplotype reduces the fraction of tau molecules that include the fragment encoded by the MAPT gene’s exon 2. 

The other MAPT variant associated with PSP is statistically independent of the H1 haplotype and its function is unknown.

Over the past two decades a handful of other gene variants not on chromosome 17 have been found to be slightly more common in people with PSP than in those without PSP.  These genes help control a variety of critical processes such as disposal of damaged proteins, inflammatory mechanisms, operation of synapses, and integrity of the brain cells’ insulating sheaths.  However, the effect of these genes, individually or together, is too small to serve as a diagnostic test for the disease or to produce more than one case in a family.   

A gene called LRRK2 has been found to influence (in a rough way) not the likelihood of PSP, but the age at which it starts.  CurePSP is presently supporting a project to pursue this clue to try to find a blood test that might predict the individual’s rate of progression.  As it happens, mutations in LRRK2 are the most common cause of familial Parkinson’s disease and the occasional person with that mutation will have the pathology of PSP at autopsy despite having had the outward appearance of PD during life.  Wonders never cease.  Drugs that suppress the action of abnormal (and normal) LRRK2 are in trials for Parkinson’s.

Despite all I’ve said about the genetic component of PSP being subtle, a small fraction of people with PSP do have a relative with the same diagnosis, raising questions about the risk to their siblings and children.  A few points of advice about that:

  • When a disease occurs in several members of a family in a pattern consistent with either a dominant or a recessive mechanism, it’s easy nowadays to identify that gene.  Despite the dozens of families alleging multiple members with PSP, such a gene has never been reported in the literature. 
  • False-positive diagnoses of PSP are common.  This may account for most of the reports of multiply-affected families, even if one of them had autopsy confirmation.  However, in most situations where two or more relatives have been diagnosed with PSP, there have been no autopsies.
  • A strongly familial disorder called frontotemporal dementia with parkinsonism (FTDP) can mimic PSP, even at autopsy, but the special features of PSP such as balance loss and trouble with downgaze are mild or absent.  Many of the mutations causing this disorder are in the MAPT gene, but those mutations do not occur in non-familial PSP.  Furthermore, FTDP is associated with the MAPT’s H2 rather than H1 haplotype.  Both of these points cast additional doubt on FTDP being real PSP.  The FTDP-associated mutations can be detected by a commercially available blood test with a doctor’s prescription, but they are very rare, with only about 100 such families having been reported in the medical literature world-wide.
  • Despite those caveats, there actually are two or three families world-wide having several members with ordinary PSP (i.e., not FTDP) both during life and at autopsy, with no mutations in the MAPT gene.  Such families can be highly valuable for PSP research, as the gene causing their disease could be encoding a protein that might be key to all PSP.

Bottom line: 

Familial PSP is so rare that people with that condition need not be concerned for their children or siblings.  This advice even accounts for the possibility that what has been diagnosed as PSP may in fact be its rare, familial imitator, FTD with parkinsonism.  Most PSP experts advise their patients’ healthy relatives to make no changes to plans for career, children or finances because of one person with PSP in the family. 

However, when there is a clear indication of two or more close relatives with PSP, one should consider testing one affected person for FTDP by sequencing either the MAPT gene or a battery of genes associated with various dementing neurodegenerative diseases.  This should be done only with the guidance and participation of a genetics counselor or neurologist well-versed in interpreting genetic testing.  If the affected patient has one of those mutations, then another affected relative can be tested as confirmation and healthy relatives can be tested for the same specific mutation if they so choose.  However, a positive result would not predict the age of symptom onset, so there is little or no actionable information to be gained through testing healthy relatives.

Further research results in the near term could change these recommendations, so keep an eye on http://www.curepsp.org for updates.  But if you want me to speculate right now, take a look at the next post.

Drilling into a gene

So here’s the second of five installments in this fall’s series on CurePSP’s newly funded grants. 

Do you recall that the 2011 publication by CurePSP’s Genetics Corsortium discovered four new places in the genome where a slight variant is associated with slightly greater chance of developing PSP?  The genes containing those variants are cryptically called MAPT, STX6, EIF2AK3 and MOBP.  The first one stands for “microtubule-associated protein tau” and the protein it codes for is, of course, our old frenemy, the tau protein.  Well, when you break the effect down statistically, it turns out that in the MAPT gene, two different variants are each independently associated with increasing PSP risk.  One has been known since 1998 and remained the only known PSP genetic risk factor until 2011.  Its name is the “H1 haplotype.”  (Click on the link for explanatory details. )  The other one, previously unknown, is called only “rs232557.” That variation specifically is the substitution of one “letter” in the genetic code for another, called a single-nucleotide polymorphism, or SNP, pronounced “snip.”  The substitution is probably not itself be the cause of the PSP risk; it’s only a “marker,” a variation that was already present in the MAPT gene in the individual in which the PSP-causing mutation originally occurred. That person then passed both the innocuous old marker variant and the new disease-causing variant together to subsequent generations.  The two stayed together on the chromosome (in this case, chromosome 17) through all those generations because their very close physical proximity means that a break between them during the reproductive process (where sperm cells or ova are made, called “meiosis”) is statistically unlikely. 

Still with me here?  Back to the new grant, where Rueben G. Das, PhD of the University of Pennsylvania proposes to figure out just how the variant revealed by the rs242557 marker increases PSP risk.  We already know that rs242557 is located in an intron of the MAPT (tau) gene.  Introns are long stretches of DNA between the shorter stretches, the exons, which actually encode the structure of proteins.  Introns can do a variety of things, though many of them seem to be just “junk DNA” deactivated by the evolutionary process somewhere between single-celled creatures and ourselves.  But some introns regulate the “expression” of the exons, i.e., the number of RNA molecules the exons produce, which in turn determines the number of molecules of the corresponding protein that the cell makes. 

Introns may also regulate which specific exons in the gene actually get encoded into RNA and which don’t.  That’s relevant for PSP, where nearly all the tau molecules in the neurofibrillary tangles include the product of MAPT’s exon 10, producing “4-repeat” tau.  This contrasts with normal tau in adult human brain, which includes exon 10’s stretch of amino acids on only half of the copies.  The other half are called “3-repeat” tau.

One of Dr. Das’ experiments will simply excise (“knock out”) the variable nucleotide at the rs242557 site.  Others will knock out or change one of the nucleotides nearby.  These experiments will be tried in both mouse and human brain cells.  One of the outcomes the researchers will look for will be the ratio of messenger RNA for the two forms of tau, 3-repeat tau and 4-repear.  A ratio favoring 4-repeat tau would suggest a PSP-causing effect.  Of course, they will also look at the finished tau proteins corresponding to these MAPT gene variants.

Additional readouts will be the messenger RNAs for other genes located in the same general area of chromosome 17 (and their associated proteins) that have bene associated with PSP or Alzheimer’s disease.  Those genes are called NSF, KANSL1, LRR37A and CRHR1.

Dr. Das completed a postdoctoral fellowship (the final stage of training for a lab scientist) at Penn in 2017 under the mentorship of Gerard Schellenberg, PhD, a world authority in the genetics of neurodegenerative disorders.  They continue to work together now that Dr. Das has graduated to Senior Research Investigator at Penn.  Jerry serves on CurePSP Scientific Advisory Board and of course recused himself from the evaluation of this grant application.

Back to science: To create these tiny, targeted changes in the DNA at the rs242557 site, Dr. Das and colleagues will use the new gene-editing technique called CRISPR-Cas9.  Just a month ago, the two scientists most prominent in the development of that technique, Jennifer Doudna and Emmanuelle Charpentier, received the Nobel Prize for that work, which appeared in 2012 and has been called one of the most important advances in biological science in history.   Like many useful techniques in biology and medicine, this one harnesses something from nature, in this case an anti-viral defensive mechanism present in about half of all species of bacteria, an enzyme called CRISPR (clustered regularly-interspaced short palindromic repeats).  The CRISPR protein is coupled with another bacterial protein, Cas9, which can cut DNA.  (“Cas” means CRISPR-associated, and yes, there are at least eight other Cas enzymes.)  The researcher then adds to the complex of CRISPR and Cas9 a stretch of synthetic RNA custom-designed to complement the stretch of DNA targeted for alteration.  That “guide RNA” allows the complex to recognize the DNA site of interest, where the Cas9 proceeds to make a cut. 

If this project is successful and reveals which nearby genes are up- or down-regulated by variants in rs242557, the next steps would be to try to normalize the function of the resulting protein by other means such as conventional drugs. Another approach might reduce the expression of the offending DNA variant by giving an anti-sense oligonucleotide.

This grant is only a one-year project and I’ll report its results once published or otherwise publicly presented.  Stay tuned now for posts on the other new CurePSP grants.